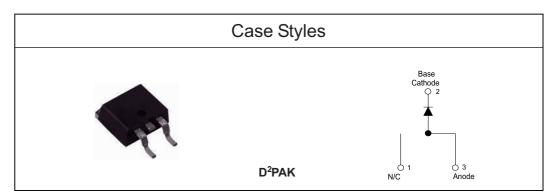
SCHOTTKY RECTIFIER

8 Amp

$$I_{F(AV)} = 8 \text{ Amp}$$

 $V_R = 80 - 100V$


Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	8	А
V _{RRM} range	80 -100	V
I _{FSM} @tp=5 µs sine	850	Α
V _F @8 Apk, T _J = 125°C	0.58	V
T _J range	- 55 to 175	°C

Description/ Features

The 8TQ .. Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

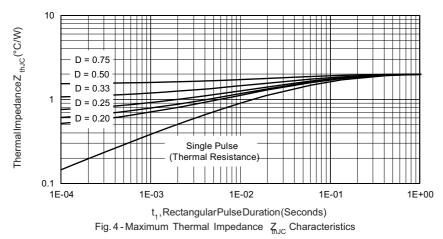
- \bullet 175° C T $_{\rm J}$ operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

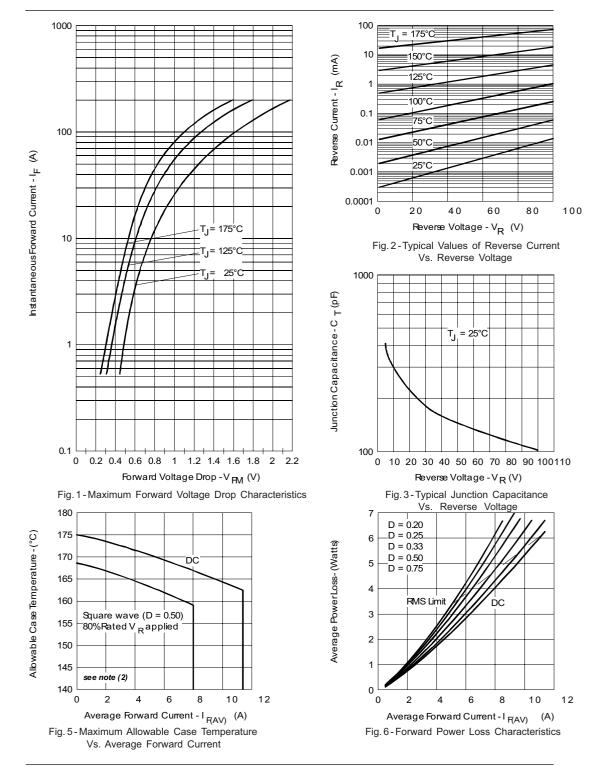
Voltage Ratings

Part number	8TQ080SPbF	8TQ100SPbF
V _R Max. DC Reverse Voltage (V)	00	400
V _{RWM} Max. Working Peak Reverse Voltage (V)	80	100

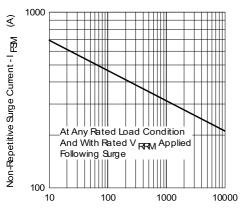
Absolute Maximum Ratings

	Parameters	8TQ	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current *See Fig. 5	8	А	50% duty cycle @ T_C = 157° C, r	ectangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	850	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and	
	Surge Current * See Fig. 7	230		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied	
E _{AS}	Non-Repetitive Avalanche Energy	7.50	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 0.50 \text{Amps}, L =$	60 mH	
I _{AR}	Repetitive Avalanche Current	0.50	Α	Current decaying linearly to zero in 1 µsec		
				Frequency limited by T _J max. V _J	_A =1.5xV _R typical	

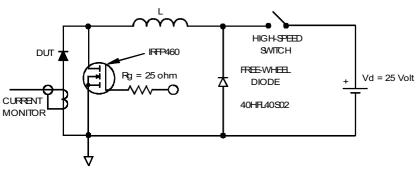

Electrical Specifications


	Parameters	8TQ	Units		Conditions	
V_{FM}	Max. Forward Voltage Drop (1)	0.72	V	@ 8A	T - 25 °C	
	* See Fig. 1	0.88	V	@ 16A	T _J = 25 °C	
		0.58	V	@ 8A	T ₁ = 125 °C	
		0.69	V	@ 16A	1 _J = 123 0	
I _{RM}	Max. Reverse Leakage Current (1)	0.55	mA	T _J = 25 °C	\/ = rated \/	
	* See Fig. 2	7	mA	T _J = 125 °C	V _R = rated V _R	
C _T	Max. Junction Capacitance	500	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25 °C		
L _s	Typical Series Inductance	8	nH	Measured lead to lead 5mm from package body		
dv/dt	$\begin{array}{c} \text{Max. Voltage Rate of Change} \\ \text{(Rated V}_{\text{R}}\text{)} \end{array}$	10000	V/ µs			

(1) Pulse Width < 300μ s, Duty Cycle < 2%


Thermal-Mechanical Specifications

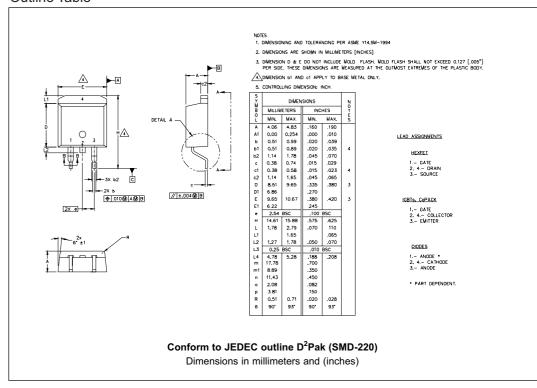
	Parameters		8TQ	Units	Conditions
T _J	Max. Junction Temperature Range		-55 to 175	°C	
T _{stg}	Max. Storage Temperature Range		-55 to 175	°C	
R _{thJC}	Max. Thermal Resistance J to Case	unction	2.0	°C/W	DC operation *See Fig. 4
R _{thCS}	Typical Thermal Resistance, Case to Heatsink		0.50	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		2 (0.07)	g (oz.)	
Т	Mounting Torque	Min.	6 (5)	Kg-cm	
		Max.	12 (10)	(lbf-in)	
	Marking Device			8TQ	.S Case ² Btayle D



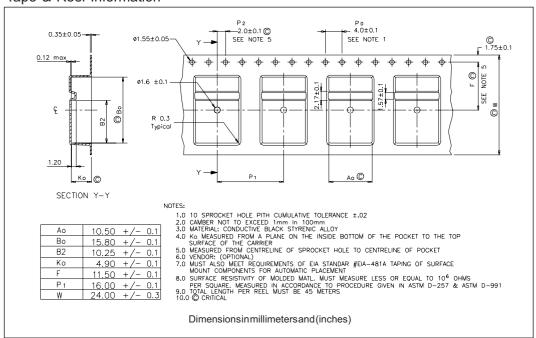
8TQ...SPbF Series

Square Wave Pulse Duration - t_p (microsec)

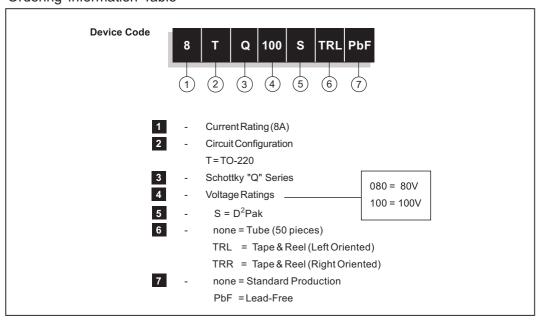
Fig. 7 - Maximum Non-Repetitive Surge Current



(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;


 $\label{eq:pd} \operatorname{\sf Pd} = \operatorname{\sf Forward} \operatorname{\sf Power} \operatorname{\sf Loss} = \operatorname{\sf I}_{\operatorname{\sf F}(\operatorname{\sf AV})} \operatorname{\sf xV}_{\operatorname{\sf FM}} \textcircled{@} (\operatorname{\sf I}_{\operatorname{\sf F}(\operatorname{\sf AV})} / \operatorname{\sf D}) \quad (\operatorname{\sf see} \operatorname{\sf Fig.} 6);$

 $\begin{array}{c} {\rm Pd}_{\rm REV} = {\rm Inverse\,Power\,Loss} = {\rm V}_{\rm R1} {\rm x\,I}_{\rm R} (1-{\rm D}); \ {\rm I}_{\rm R} @ {\rm V}_{\rm R1} = 80\% \, {\rm rated} \, {\rm V}_{\rm R} \\ & {\rm Fig.\,8-Unclamped\,\,Inductive\,\,Test\,\,Circuit} \end{array}$


Outline Table

Tape & Reel Information

Ordering Information Table

